min read

A is for AI

artificial intelligence ai AI optimization flexciton semiconductors wafer fabs semiconductor production scheduling efficiency productivity machine learning reinforcement technology elon musk samsung tsmc

We are excited to introduce the Flexciton Tech Glossary Blog Series: A Deep Dive into Semiconductor Technology and Innovation.

In an ever-evolving semiconductor industry, understanding the nuances of new technologies and the transformative potential of artificial intelligence and optimization is paramount. The Flexciton Tech Glossary Blog Series is designed to shed light on specific technologies and innovations, offering insights into how these advancements can revolutionise semiconductor manufacturing operations.

Each article in this series will delve into a distinct theme, aiming to equip any practitioner in the industry from industrial engineers and manufacturing experts up to VP level professionals with the knowledge to integrate these innovations into their daily operations.

Beyond our in-house expertise, we’re excited to collaborate with industry experts, inviting them to contribute and enrich our series with their specialised knowledge and experience. Join us on this enlightening journey as we explore the frontiers of the semiconductor industry from A-Z.

AI will transform the semiconductor industry

Artificial Intelligence (AI) has become a transformative force in various sectors, driving a global wave of innovation and automation. Seemingly overnight, systems like ChatGPT that harness the primary human interface – natural language – have revolutionised how we interact with technology. In a similar vein, generative art technologies have reinvented our relationship with creativity, making it more accessible than ever before. These remarkable systems have acquired their capabilities through learning, fueled by training on vast amounts of data. This ongoing revolution prompts the question: what is the next frontier to be conquered?

Beyond the novel consumer applications leading the charge, the implications of AI in specialised fields, such as semiconductor manufacturing, are equally profound. Estimates place the earnings already achieved by AI across the semiconductor value chain at over $5 billion. The range of applications is immense and spans activities at all levels. From informing capital allocation, to demand forecasting, fab layout planning, and right down to chip design, AI can enable automation and increase efficiency. Semiconductor manufacturing, in particular, has been identified as the function presenting the most attractive opportunities, where the potential savings have been calculated to be over $10 billion in just the next few years [1].

Impact at all levels 

The semiconductor industry is facing several challenges where AI can make a significant impact. These span all the industry’s key activities: long-term capacity planning, research & design, sales, procurement and, of course, manufacturing. Some use cases that are increasingly gaining traction are:

  • Supply Chain Optimization: Predictive analytics can forecast demand, optimize inventory levels, and enhance the overall efficiency of the supply chain [2]. 
  • Automated Material Handling Systems (AMHS): Utilising AI-driven cognitive robotics within AMHS automates material transportation throughout the plant [3], optimizing production planning considering AMHS [4].
  • Predictive Maintenance: AI can predict when equipment is likely to fail or require maintenance, reducing downtime and increasing overall equipment efficiency [5].
  • Defect Detection: Advanced image recognition algorithms can identify defects in wafers at an early stage, ensuring higher yields and reducing wastage [6].
  • Virtual metrology: AI can be deployed to estimate a product’s quality directly from production process data. This enables real-time quality monitoring without additional measuring steps [7]. 
  • Process control: AI can analyse vast amounts of data to optimize the manufacturing process, ensuring the best conditions for each step and improving the overall quality of the chips (e.g. tool matching) [8].

An automated material handling system (AMHS) inside the clean room of a wafer fab.

In this article, we focus on AI’s potential to automate scheduling within a semiconductor wafer fab and improve key metrics: increase the throughput of manufacturing lines, reduce cycle times and improve on-time delivery. But first, we step back and define both intelligence and artificial intelligence. 

Defining intelligence

Defining intelligence has been a long-standing challenge, with various perspectives offered. A widely-accepted definition, which broadly aligns with the context of semiconductor applications, is as follows:

Intelligence is the ability to accomplish complex goals. 

As suggested by Max Tegmark [9], intelligence is not universal but depends on the defined goal. As such, there are many possible types of intelligence. Extending this concept further, intelligence can be characterised according to the following features.

Goal type: Intelligence can be technical (problem-solving), social (interaction), or creative (idea generation).

Skill level: This is typically categorised as below/equivalent/super-human level. This determines whether we aim to match the performance of a human or surpass it.

Scope: Narrow intelligence specialises in a specific task, while broad intelligence encompasses a wide range of tasks like human intelligence.

Autonomy: Intelligence can operate with varying degrees of independence, from human-guided to fully autonomous.

In semiconductor scheduling, super-human performance level is necessary to sift through billions or even trillions of candidate solutions to derive optimal decisions, whilst adhering to complex constraints. Focusing on the narrow scope of scheduling allows the system to specialise, thereby optimizing its performance for these specific requirements. The technical nature of the task calls for a solution that exploits the strictly technical aspects to achieve superhuman performance. Finally, a system with high autonomy and no need for human intervention is desired in such a dynamic environment. 

Three important facets of Artificial Intelligence

AI involves creating models and machines that mimic human intelligence, including learning, reasoning, and decision-making. 

Learning is an important aspect of AI, relying on a model’s ability to iteratively refine its internal parameters until it can accurately capture underlying patterns. Machine Learning is the cornerstone approach for learning from data and techniques in this category can range from simple models like Linear Regression to complex Deep Learning networks. 

Reasoning involves drawing inferences based on established rules and facts, mimicking the human ability to logically connect information. It can aid in tasks like medical diagnosis (See the generative LLM AI from Google Med-Palm 2) or legal case analysis.  

Decision-making encompasses action exploration and problem-solving. Action exploration deals with determining actions through interaction with an environment, which can vary from well-defined scenarios, like a chess game, to unstructured situations, like driving a car. Problem-solving, on the other hand, focuses on finding solutions to clearly defined problems with specific objectives and constraints. This can involve simple tasks like sorting or more intricate challenges such as route planning, resource allocation, and scheduling. Optimization and mathematical programming are often employed in these contexts.

Five Crucial Factors When Selecting AI for Production Scheduling

Production scheduling involves making optimal choices to coordinate resources, tasks, and time to meet production goals. It requires handling well-defined parameters and constraints, along with specific objectives like maximising throughput or achieving on-time delivery. As such, it is best suited to rigorous and well-structured AI methods that focus on optimal and feasible decision-making such as mathematical programming

Nevertheless, good production scheduling can involve some aspects of learning and reasoning as well. Learning can be useful when some of the parameters are not well defined or static. For example, estimating transfer times between different locations of a fab may depend on various parameters, necessitating the use of a prediction model that has learned from past data. In terms of reasoning, a good decision-making approach should allow some degree of introspection from the user. Contrary to black box approaches, such as deep neural networks, mathematically formal methods such as Mixed Integer Linear Programming (MILP) enable transparency and explainability.

Choosing the right AI technique for production scheduling in semiconductor manufacturing involves navigating the intricate balance among five crucial characteristics, each vital in this high-stakes field:

Optimality refers to the ability of an AI technique to reach and prove that the true optimal solution has been found. In a complex environment such as a semiconductor fab, where small improvements can have significant cost or time implications, optimality is of paramount importance. 

Feasibility is about ensuring that the solution found truly abides by the constraints of the problem. Semiconductor fabs are bounded by many constraints, including machine capacity, human resources, and time windows. An AI solution must respect these constraints while optimizing the schedule. 

Speed is crucial as it directly impacts the responsiveness of the system. Semiconductor manufacturing is a dynamic environment with constantly changing states. Therefore, the selected AI technique must be able to provide fast and accurate solutions to adapt to these changing conditions. 

Explainability refers to the ability of an AI technique to provide insights into how it arrived at a given solution. In a high-stakes environment like a semiconductor fab, explainability helps build trust in the system, enables troubleshooting, and allows for more effective human-AI collaboration.

Flexibility refers to the technique’s applicability across a wide range of possible scenarios and system changes. This attribute highlights the capability of an AI method to be fully autonomous and require  minimal human supervision and intervention. Within the context of a semiconductor plant, this quality is indispensable, especially as complexity grows and specialised personnel are spread thinner across other functions. 

Different AI techniques fare differently on these dimensions. Rule-based systems offer high explainability and feasibility but may lack optimality, especially in complex scenarios. Unforeseen changes in a fab’s state may require rule adjustments or even entirely new ones, affecting flexibility. Heuristic approaches can provide acceptable solutions quickly, but typically cannot provide optimality or feasibility guarantees. Reinforcement learning can potentially offer high levels of optimality and speed, but at the cost of explainability, the risk of infeasibility, and the need for extensive tuning. 

In contrast, mathematical programming techniques, such as MILP, can offer an excellent balance. They provide guaranteed feasibility, while the distance to true optimality can be easily computed. They offer explainability in terms of how decisions are made based on the objective function and constraints. Although computational complexity can be an issue, they can greatly benefit from advanced decomposition methods, and are well complemented by heuristic methods [10].

In the context of semiconductor fab scheduling, where feasibility, optimality, and explainability are particularly important, mathematical programming techniques can be a superior choice for AI implementation. Their deterministic nature and the rigour of their mathematical foundations make them a highly reliable and robust choice for such high-stakes, complex operational problems.

Going beyond with AI

Today, AI in semiconductor manufacturing stands at a critical point. With the increasing complexity of semiconductor processes and the escalating demand for efficiency and quality, the need for effective AI solutions has never been greater. As evidenced in many large companies’ roadmaps, AI is regarded as a key enabling technology of the future [11]. Companies that do not devote resources to a comprehensive AI strategy risk being left behind.

As we delve deeper into the era of AI-driven manufacturing, the nuanced roles of different AI techniques will become more and more apparent. Machine learning approaches bring novel capabilities for learning and predicting from data: yield improvement and predictive maintenance are very promising paths. When it comes to autonomously and reliably scheduling and planning operations in a fab, an exact optimization approach, such as MILP, becomes the key to unlocking peak performance.

Ioannis Konstantelos, Principal Optimization Engineer at Flexciton
Dennis Xenos, CTO and Cofounder at Flexciton


[1] McKinsey & Company, Scaling AI in the sector that enables it: Lessons for semiconductor-device makers, April 2021. Link

[2] Mönch, L., Uzsoy, R. and Fowler, J.W., 2018. A survey of semiconductor supply chain models part I: semiconductor supply chains, strategic network design, and supply chain simulation. International Journal of Production Research, 56(13), pp.4524-4545.

[3] Lee, T.E., Kim, H.J. and Yu, T.S., 2023. Semiconductor manufacturing automation. In Springer Handbook of Automation (pp. 841-863). Cham: Springer International Publishing.

[4] Mehrdad Mohammadi, Stephane Dauzeres-Peres, Claude Yugma, Maryam Karimi-Mamaghan, 2020, A queue-based aggregation approach for performance evaluation of a production system with AMHS, Computers & Operations Research, Vol. 115, 104838, https://doi.org/10.1016/j.cor.2019.104838

[5] Çınar, Z.M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M. and Safaei, B., 2020. Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), p.8211.

[6] Ishida, T., Nitta, I., Fukuda, D. and Kanazawa, Y., 2019, March. Deep learning-based wafer-map failure pattern recognition framework. In 20th International Symposium on Quality Electronic Design (ISQED) (pp. 291-297). IEEE.

[7] Dreyfus, P.A., Psarommatis, F., May, G. and Kiritsis, D., 2022. Virtual metrology as an approach for product quality estimation in Industry 4.0: a systematic review and integrative conceptual framework. International Journal of Production Research, 60(2), pp.742-765.

[8] Moyne, J., Samantaray, J. and Armacost, M., 2016. Big data capabilities applied to semiconductor manufacturing advanced process control. IEEE transactions on semiconductor manufacturing, 29(4), pp.283-291.

[9] Max Tegmark, Life 3.0, Being human in the age of Artificial Intelligence, 2018 

[10] S. Elaoud, R. Williamson, B. E. Sanli and D. Xenos, "Multi-Objective Parallel Batch Scheduling In Wafer Fabs With Job Timelink Constraints," 2021 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 2021, pp. 1-11, doi: 10.1109/WSC52266.2021.9715465.

[11] Bosch, Humans and machines team up in the factory of the future, October 2021. Link

Explore more articles

View all
culture flexciton hiring vacancies job openings jobs infineon tsmc semiconductor labour shortage semiconductor industry stmicro samsung intel sk hynix smic
Read time
 min read
The Flex Factor with... Lio

Meet Lio, a driving force behind client success as Flexciton's Technical Customer Lead. Discover more about her keen eye for collaboration and passion for innovation in this edition of The Flex Factor.

Meet Lio, a driving force behind client success as Flexciton's Technical Customer Lead. Discover more about her keen eye for collaboration and passion for innovation in this edition of The Flex Factor.

Tell us what you do at Flexciton?

I’m a Technical Customer Lead.

What does a typical day look like for you at Flexciton?

The day is incredibly busy and passes quickly while collaborating with the customer team and other teams at Flexciton, making rapid progress day by day. My focus revolves around ongoing customer work, such as our work at Renesas (analyzing their adherence, checking the Flex Global heat map, and listening to feedback from the client). Additionally, I often work on live demos and PoC projects. The nature of my tasks varies depending on the project stage, ranging from initial data analysis and integration to final stages where I collaborate with sales on deliverables and the story of the final report. While consistently moving forward with projects and meeting weekly targets, we concurrently establish our working methods and standardize processes to improve efficiency for future projects. For lunch, I usually go to Atis, my go-to place for fresh and nutritious meals. People in the office call it a salad, but I consider it the best healthy lunch with the highest ROI.

What do you enjoy most about your role?

I find the most enjoyment in witnessing the impact our product has on customers who need it. It's fulfilling to see their reactions when they share challenges, and I appreciate understanding how Flexciton can collaborate with them, providing that extra element for improvement.

If you could summarize working at Flexciton in 3 words, what would they be?

Creative, Fast, Collaborative.

Given the fast-paced evolution of technology, what strategies do you recommend for continuous learning and skill development in the tech field?

Stay closely connected to the client side. Understanding the technology they're developing and their current tech level (MES and other systems) provides insights into their readiness for Flexciton.

In the world of technology and innovation, what emerging trend or development excites you the most, and how do you see it shaping our industry?

The semiconductor industry's rapid evolution and diversity are fascinating. The competition between TSMC and Samsung Foundry in advanced GAA (gate-all-around) technology is particularly intriguing. While Samsung claims to be ahead, industry voices suggest a bluff with poor yields. The competition is ongoing, and I wonder if TSMC will maintain its lead or if there will be a paradigm shift in the industry.

Tell us about your best memory at Flexciton?

Meeting the Renesas team at their fab in Palm Bay and witnessing one of their operators' reaction to our app was a memorable experience. Kodi, a talented young manufacturing specialist, was genuinely impacted by our technology which was amazing to see in person. After returning home, he even had a piece of code named after him by Amar.

Do you think you have what it takes to work at Flexciton? Visit our careers page to browse our current openings.
flexciton semiconductor industry ai scheduling optimization job shop tsmc infineon stmicro tower vishay siemens inficon efficiency artificial intelligence machine learning reinforcement learning chatgpt
Read time
 min read
Harnessing AI's Potential: Revolutionizing Semiconductor Manufacturing

AI has unquestionably stood out as the prevailing technological theme of the year. This wave of innovation begs the question: how can the semiconductor industry, which stands at the heart of technological progress, leverage AI to navigate its own intricate challenges?

The dominant technological theme of the year is unmistakably clear: artificial intelligence (AI) is no longer a distant future, but a transformative present. From the startling capabilities of conversational ChatGPT to the seamless navigation of autonomous vehicles, AI is demonstrating an unprecedented ability to manage complexity and enhance decision-making processes. This wave of innovation begs the question: how can the semiconductor industry, which stands at the heart of technological progress, leverage AI to navigate its own intricate challenges?

Complexity-driven Challenges 

Semiconductor wafer fabs are marvels of modern engineering, embodying a complexity that rivals any known man-made system. These intricate networks of toolsets and wafer pathways require precision and adaptability far beyond the conventional methods of management. The difficulty of this task is compounded by the current challenges that hinder its dynamic pace: a protracted shortage of skilled labor, technological advancement in product designs, and the ever-present volatility of the supply chain. 

The latest generation of products is the pinnacle of complexity, with production processes that involve thousands of steps and incredibly intricate constraints. This complexity is not just a byproduct of design; it is an inherent challenge in scaling up production while keeping costs within reasonable limits.

The semiconductor supply chain is equally complicated and often susceptible to disruptions that are becoming all too common. In this context, the requirement for skilled labor is more pronounced than ever. Running fab operations effectively demands a workforce that's not just technically skilled but also capable of innovative thinking to solve problems of competing objectives, improve processes, and extract more value. No small task in an environment already brimming with complexity.

The Need for AI in Semiconductor Manufacturing

As we delve into Industry 4.0, we find ourselves at a crossroads. The software solutions of today, while advanced, are not the panacea we once hoped for. The status quo has simply reshuffled the problems we face; we've transitioned from relying on shop floor veterans' tacit knowledge and intuition to a dependency on people who oversee and maintain the data in digital systems. These experts manning the screens are armed with MES, reporting, and legacy scheduling software, all purporting to streamline operations. Yet, the core issue remains: these systems still hinge on human intelligence to steer the intricate workings of the fabs.

At the core of these challenges lies a common denominator: the need for smarter, more efficient, and autonomous systems that can keep pace with the industry's rapid evolution. This is precisely where AI enters the frame, poised to address the shortcomings of current Industry 4.0 implementations. AI is not just an upgrade—it's a paradigm shift. It has the capability to assimilate the nuanced knowledge of experienced engineers and operators working in a fab and translate it into sophisticated, data-driven decisions. By integrating AI, we aim to break the cycle of displacement and truly solve the complex problems inherent in wafer fabs management. The potential of AI is vast, ready to ignite a revolution in efficiency and strategy that could reshape the very fabric of manufacturing.

Building AI for the Semiconductor Industry

Flexciton is the first company that built an AI-driven scheduling solution on the back of many years of scientific research and successfully implemented it into the semiconductor production environment.  So how did we do it?  

Accessing the Data 

The foundation lies in data – clean, accessible, and comprehensive data. Much like the skilled engineers who intuitively navigate the fab's labyrinth, AI requires a map – a dataset that captures the myriad variables and unpredictable nature of semiconductor manufacturing. 

Despite the availability of necessary data within fabs, it often remains locked in silos or relegated to external data warehouses, making it difficult to access. Yet, partnerships with existing vendors can unlock these valuable data reserves for AI applications.

Finding People Who Can Build AI

The chips that enable AI are designed and produced by the semiconductor industry, but the AI-driven applications are developed by people who are not typically found within the sector. They align with powerhouses like Google and Amazon or deep-tech companies working on future-proof technologies. This reveals a broader trend: the allure of semiconductors has diminished for the emerging STEM talent pool, overshadowed by the glow of places where state-of-the-art tech is being built. Embracing this drift, Flexciton planted its roots in London, a nexus of technological evolution akin to Silicon Valley. This strategic choice has enabled us to assemble a diverse and exceptional team of optimization and software engineers representing 22 nationalities among just 43 members. It's a testament to our commitment to recruiting premier global talent to lead the charge in tech development, aiming to revolutionize semiconductor manufacturing. 

AI Needs Cloud

The advent of cloud computing marks a significant milestone in technological evolution, enabling the development and democratization of technology based on artificial intelligence. At the core of AI development lies the need for vast computing power and extensive data storage capabilities. The cloud environment offers the ability to rapidly provision resources at a relatively low cost. With just a few clicks, a new server can be initialized, bypassing the traditional complexities of hardware installation and maintenance typically handled by IT personnel.

Furthermore, the inherent scalability of the cloud means that not only can we meet our current computing needs but we can also seamlessly expand our resources as new technologies emerge. This flexibility provides collaborating fabs with the latest technology while avoiding the pitfalls of significant initial investment in equipment that requires regular maintenance and eventually becomes obsolete.

Security within the cloud is an area where misconceptions abound. As a cloud-first company, we often address queries about data security. It's crucial to understand that being cloud-first does not equate to possessing your data. In fact, your data is securely stored in Microsoft Azure data centers, which are bastions of security. Microsoft's commitment to cyber security is reflected in its employment of more than 3,500 professionals whose job is to ensure that data centers are robust and a fortress for data, offering peace of mind that often surpasses the security capabilities of private data centers.

Effective Deployment of AI in Fabs

The introduction of AI-driven solutions within a fab environment entails a significant change in existing processes and workflows and often results in decision-making that diverges from the traditional. This can unsettle teams and requires a comprehensive change management strategy. Therefore the implementation process must be planned as a multifaceted endeavor and deeply rooted in human collaboration. 

A successful deployment begins with assembling the right team—a blend of industrial engineers with intimate knowledge of fab operations, and technology specialists who underpin the AI infrastructure. This collective must not only include fab management and engineers but also those who are the lifeblood of the shop floor—individuals who intimately understand the fab's heartbeat.

When it comes to actual deployment, the process is iterative and data-centric. Setting clear objectives is pivotal. The AI must be attuned to the Fab's goals—be it enhancing throughput or minimizing cycle times. Often, the first output may not align with operational realities—a clear indication of the AI adage that the quality of input data dictates the quality of output. It is at this juncture that the expertise of Fab professionals becomes crucial, scrutinizing and correcting the data, and refining the schedules until they align with practical Fab dynamics. With objectives in place and a live scheduler operational, the system undergoes rigorous in-FAB testing.

Change management is the lynchpin in this transformative phase. The core of successful AI adoption is rooted in the project team's ability to communicate the 'why' and 'how'—to educate, validate, and elucidate the benefits of AI decisions that, while novel, better align with overarching business goals and drive performance metrics forward.

Making AI Understandable and Manageable

The aversion to the enigmatic 'black box' is universal. In the world of fabs, it can be a barrier to trust and adoption —operational teams must feel empowered to both grasp and guide the underlying mechanisms of AI models.

We made a considerable effort to refine our AI scheduler by incorporating a feature that enables the user to influence the objective of what our AI scheduler is tasked to achieve and also to understand the decision. Once a schedule is created, engineers can look through those decisions and inspect and interrogate them to understand why the scheduler made these decisions.

Case Studies: Success Stories of AI Deployment

I firmly believe that we are on the cusp of a transformative era in semiconductor manufacturing, one where AI-driven solutions will yield unprecedented benefits. To illustrate this, let's delve into some practical case studies. 

The first involves implementing Flexciton's AI scheduler within the complex diffusion area of a wafer fab—a zone notorious for its intricate processes. We aimed to achieve a trifecta of goals: maximize batch sizes, minimize rework, and significantly reduce reliance on shop floor decision-making. The challenge was magnified by the fab's limited IT and IE resources at the time of deployment. Partnering with an existing vendor whose systems were already integrated and had immediate access to essential data facilitated a rapid and efficient implementation with minimal engagement of the fab's IT team. This deployment led to remarkable improvements: clean tools saw 25% bigger batches, and rework in the diffusion area was slashed by 36%.

Another case study details a full fab deployment, where the existing rules-based scheduling system was replaced with Flexciton's AI scheduler. The goal was to enhance capacity and reduce cycle times. The deployment was staged, beginning with simpler areas starting with metrology tools, through the photolithography area and eventually scaling to the entire fab, yielding a global optimization of work-in-process (WIP) flow. The result was a significant increase in throughput and a staggering 75% reduction in manual flow control transactions, a testament to the AI's ability to autonomously optimize WIP flow and streamline operations.

The Autonomous Future of Semiconductor Manufacturing

In closing, the semiconductor industry stands on the precipice of a new era marked by autonomy. AI technology, with its capacity to make informed decisions without human input, has demonstrated not only the potential for improved KPIs but also a significant reduction in the need for human decision-making. The future of semiconductor manufacturing is one where AI-driven solutions consistently deliver superior production results, alleviating the human workload and steering fabs towards their objectives with unprecedented precision and efficiency.

As we embrace this autonomous future, it becomes clear that the integration of AI in semiconductor manufacturing is not just an enhancement of the status quo but a reinvention of it. With each fab that turns to AI, the industry moves closer to realizing a vision where technology and human ingenuity converge to create a landscape of limitless potential.

Author: Jamie Potter, CEO and Cofounder, Flexciton

culture flexciton hiring vacancies talent shortage skilled labour skills shortage software engineer jobs semiconductor industry jobs optimization batching jobs infineon tsmc stmicro samsung vishay tower nexperia nxp
Read time
 min read
The Flex Factor with... Will

Introducing Will, Lead Backend Engineer at Flexciton. Explore his daily tasks, ranging from crafting backend architecture to overseeing the codebase and managing technical debt in this month's edition of The Flex Factor.

Introducing Will, Lead Backend Engineer at Flexciton. Explore his daily tasks, ranging from crafting backend architecture to overseeing the codebase and managing technical debt in this month's edition of The Flex Factor.

Tell us what you do at Flexciton?

I am a lead backend engineer and the software development practice lead. My work involves designing the backend architecture, managing the codebase structure and technical debt, pushing for best practices across the wider engineering team and contributing features to my delivery team.

What does a typical day look like for you at Flexciton?

I usually start my morning by scanning through the production logs from our deployments and seeing if anything looks suspect and in need of an investigation. From there it will depend on what I am focused on for that week which tends to vary a fair amount. The majority of my time is spent coding features or doing large scale design work. Some days I get to spend refactoring and restructuring our codebase, occasionally I will get to work in the devops or optimisation space which I always look forward to. In any given week there will be a handful of ongoing projects at various stages, from architectural designs to software development practice work that needs to be structured and prioritised. No day goes by without me writing at least some code, but there is a fair amount of admin work to do as well.

What do you enjoy most about your role?

The diversity of the work I get to do. My work often overlaps with optimisation and devops so I can find myself speaking the lots of different people throughout the day. There are many opportunities to dive deeper into a topic with various team members willing to support you. Since joining I have worked with terraform, CI pipelines, infrastructure, hardware configuration, optimisation, frontend, customer deployments, database optimisation and management, the application backend and much more.

If you could summarise working at Flexciton in 3 words, what would they be?

Collaborative, Challenging, Diverse.

What emerging technology do you believe will have the biggest impact on our lives in the next decade?

I think the next decade is going to be made great by lots of smaller contributions made across technology from both hardware and software. I don’t have much hope for AGI / useful AGI this decade but there is a lot going on to be excited about. From a hardware perspective we have companies making huge progress in designing chips specifically for model training, and at the other end of the spectrum more companies are putting satellites into orbit to enable global access to high speed internet. AI has fuelled the search in identifying stable structures for proteins and crystals, pushing frontiers of new medicines and treatments, as well as material science. Memory safety in programming languages has started to draw attention from governments too with languages like Rust (and potentially Hylo in the future) likely to lead for memory safe applications. It will be interesting to see how the landscape changes over the next few years and see companies start to shift their codebases over.

What’s the best piece of advice you’d give to someone starting a career in the tech industry today?

I think the best piece of advice would be to throw away any notion of imposter syndrome from the start. Programming, and tech in general, is massive, and its certainly true that the more you know, the more you realise you do not know. Everyone will take a different path throughout their career and find themselves being expert in one topic and (momentarily) hopeless in another. When the topics that you know nothing about come along, its best to embrace that and start finding opportunities to learn. It is important to convince yourself that while you may not be able to learn everything, you could learn anything and find joy in accruing that knowledge as you progress in your career. Bearing this in mind, I would say come into tech because you love it and because you want to learn. There is such as good community across programming languages and industries, anyone who wants to learn can easily find help.

Tell us about your best memory at Flexciton?

I can’t think of one great memory that stands out, but what makes Flexciton great is all the little things that happen week after week such that by Sunday evening, I am looking forward to speaking with my team in Monday standup.