3
 min read

Maximising Wafer Fab Performance: Harnessing the Cloud's Competitive Edge

cloud technology cloud-native semiconductor industry wafer fabs cloud adoption security risk cost of cloud AWS azure public cloud software hack X-FAB hacked

To cloud, or not cloud, that is the question.

Some might consider the opening statement a tad flippant in borrowing Hamlet's famous soliloquy. Yet, the internal struggle our hero feels agonising over life and death holds a certain likeness to the challenges faced by Fab Managers today. Businesses live and die by their decisions to either embrace or disregard new innovations to gain a competitive edge and nowhere is this truer than in the rough and tumble world of semiconductor manufacturing; Fairchild, National Semiconductor and S3 are just a few of those who did not last. [1][2][3]

Semiconductor manufacturing has had a long history of innovating, tweaking, and tinkering,[4] so it’s somewhat surprising that the sentiment towards cloud uptake has been weaker in the semiconductor industry compared to the wider market[5]. This article aims to explore some of the potential benefits of cloud adoption to better equip Fab Managers with the motivation to take another look at the cloud question.

Recap: What are the different types of Cloud?

Cloud computing encompasses public, private, and hybrid models. The public cloud (think Azure, AWS, Google Cloud and so on) offers rental of computational services over the internet, while the private cloud replicates cloud functionality on-premises. However, private clouds require a significant upfront investment, ongoing maintenance costs and a skilled in-house IT team to manage and maintain the infrastructure, making it a less appealing option for smaller firms. Hybrid cloud blends on-site and cloud resources for flexible workloads, segregating the most sensitive workloads to on-premise environments for the greatest control; however, control does not necessarily mean security, which will be discussed in a later article! 

Understanding the benefits of cloud

1.      The Latest Tech

Embracing the latest cloud technology offers wafer fab facilities, not just organisations, a direct path to heightened capabilities in their manufacturing processes through the use of digital and smart manufacturing technologies. By harnessing advanced computational powers such as real-time analytics; optimization[6]; and machine learning defects detection[7], fabs can maximise all their fundamental KPIs, ultimately leading to better business outcomes. McKinsey estimates that, compared to other semiconductor activities, manufacturing has the most to gain from the AI revolution (Fig. 1), and a key technology enabling this is will be the vast computational power of the cloud.[8]

Fig. 1: McKinsey estimates that the AI revolution could reduce semiconductor manufacturing costs by around $38bn.

Case Study: The Latest Tech Driving Improvements in Fab KPIs

Seagate achieved a 9% increase in moves
by utilising Flexciton’s cloud native platform and cutting-edge autonomous scheduling.

2. Redundancy, Scaling, Recovery and Updates

It is true that some of these technologies can be provided on-premises; however, cloud computing, in general, reduces downtime through redundancy, automated scaling, and disaster recovery mechanisms, ensuring seamless operation even during hardware failures or unexpected traffic spikes. Some estimates suggest that downtime can cost firms an eye-watering $1 million to $5 million per hour, depending on their size and sector. [9] By leveraging the cloud, the cost of operating disaster recovery services has demonstrated potential cost savings of up to 85% when comparing public to private options. [10] It is easy to speculate that for wafer fab critical infrastructure, the cost of downtime could be significantly higher.

Furthermore, the number of wafers processed within a fab can cause computational traffic spikes during busy periods for some applications. On-premises deployments would need to account for this, even if the resource is not in use all the time, which can add to inefficiencies, while public cloud can elastically scale down, meaning you only pay for what you use. 

Lastly, on-premises systems without the ability to monitor and update remotely are often many versions behind, prioritising perceived stability but research has shown increasing the rate of software iteration increases stability and resilience rather than weakening it. [11] Without the convenience of remote updates, legacy systems can become entrenched, with employees on the shop floor being hesitant to embrace change due to the fear of disrupting critical infrastructure and the expenses associated with upgrading IT infrastructure. This sets in motion a self-reinforcing cycle where the expenses and associated risks of transitioning increase over time, ultimately resulting in significant productivity losses as users continue to rely on outdated technology from decades past.

3. Specialisation and Comparative Advantage

Stepping back from the fab and taking a holistic view of the semiconductor manufacturing organisation reveals compelling economic arguments, both on macro and micro scales, for embracing cloud.

Allowing cloud providers to specialise in cloud computing while wafer fab manufacturers focus solely on wafer fabrication benefits the latter by freeing them from the complexities of managing IT infrastructure. [12] This collaboration allows wafer fab manufacturers to allocate their resources towards core competencies, leading to increased operational efficiency and superior wafer production.

Simply put, fabs do not build the complex tools they need to make their products, such as photolithography equipment; they purchase and utilise them in ways others can’t to produce market leading products. Why should utilising the tools of the cloud be any different?

On a macro level, the argument of specialisation also applies through comparative advantage.[13] Different continents and countries have comparative advantages in certain fields, Asia has long been a world leader in all kinds of manufacturing due to its vast populations.[14] The United States, on the other hand, has a tertiary education system which is the envy of the world; institutions like Stanford and MIT are household names across the globe, and this has provided the high technical skills needed to be the home of the technology start up. Utilisation of cloud technology and other distributed systems allows firms to take the best of what both regions have to offer, high tech manufacturing facilities from Singapore to Taiwan with the latest technology from Silicon Valley or perhaps London. Through the cloud, Fab Managers and organisations can leverage a single advanced technology across multiple fabs within complex supply chains. This eliminates the need for costly and experienced teams to travel across the globe or manage multiple teams in various locations with varying skill sets, all while locating facilities and offices where the best talent is.

In brief, semiconductor firms' fate could rest on one pivotal decision: adoption of cloud. This choice carries the promise of leveraging cutting-edge technology, fortifying resilience, and reaping a multitude of advantages. Notably, by transitioning to cloud-native solutions, Fab Managers can usher their organisations into an era of unparalleled competitiveness, all while enjoying a range of substantial benefits. Among these benefits, for example, is cloud-native architecture like Flexciton’s, promising lower cost of ownership and zero-touch maintenance for fabs. We will delve deeper into the crucial aspect of security in one of our upcoming blogs, providing a comprehensive understanding of how cloud-native solutions are actually key to safeguarding sensitive data and intellectual property, rather than compromising it. In this era of constant innovation, embracing the cloud is more than just an option; it’s becoming a strategic imperative.

Author: Laurence Bigos, Product Manager at Flexciton

References

[1] Investor relations - Texas Instruments completes acquisition of National Semiconductor - Texas Instruments

[2] ON Semiconductor Successfully Completes Acquisition of Fairchild Semiconductor for $2.4 Billion in Cash

[3] S3 Graphics: Gone But Not Forgotten | TechSpot

[4] Miller, C. (2022). Chip War: The Fight for the World's Most Critical Technology. Scribner.

[5] Flexciton | Blog & News | Is Fear Holding Back The Chip Industry’s Future In The Cloud?

[6] Flexciton | Resources | Seagate Case Study 2.0

[7] Lynceus: Inline, Real-time, AI Based Process Control Monitoring That Can Reduce Inspection & Metrology Capex (semianalysis.com)

[8] Applying artificial intelligence at scale in semiconductor manufacturing | McKinsey

[9] Know Key Disaster Recovery Statistics And Save Your Business (invenioit.com)

[10] Wood.pdf (usenix.org)

[11] Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The Science of Lean Software and DevOps. IT Revolution Press.

[12] Specialization Definition (investopedia.com)

[13] What Is Comparative Advantage? (investopedia.com)

[14] Why China Is "The World's Factory" (investopedia.com)

Explore more articles

View all
autonomous scheduling technology AST flexciton production scheduling wafer fab infineon AI artificial intelligence TSMC stmicro sk hynix micron UMC optimization semiconductors semi
Read time
 min read
Industry
Switching to Autonomous Scheduling: What is the Impact on Your Fab?

From guaranteed KPI improvements to reducing fab workload by 50%, this blog introduces some of the benefits of Autonomous Scheduling Technology (AST) and how it contrasts with the scheduling status quo.

In the fast-paced world of semiconductor manufacturing, efficient production scheduling is crucial for chipmakers to maintain competitiveness and profitability. The scheduling methods used in wafer fabs can be classified into two main categories: heuristics and mathematical optimization. Both methods aim to achieve the same goal: to provide the best schedules within their capabilities. However, because they utilize different problem-solving methodologies, the outcome is dramatically different. Simply put, heuristics generates solutions by making decisions based on if-then rules predefined by a human, while optimization algorithms search through billions of possible scenarios to automatically select the most optimal one. 

Autonomous Scheduling Technology (AST) features mathematical optimization combined with smart decomposition, allowing the quick delivery of optimal production schedules. Whether you are a fab manager or industrial engineer, the experience and results of applying Autonomous Scheduling in your fab are fundamentally different compared to a heuristic scheduler.  

Here's how switching to AST can impact your fab.

Consistent and Superior KPIs Guaranteed

Autonomous Scheduling Technology (AST) evaluates all constraints and variables in the production process simultaneously, ensuring optimal decision-making. Unlike heuristics schedulers, which require ongoing trial and error with if-then rules to solve the problem, AST allows the user to balance trade-offs between high level fab objectives. With its forward-looking capability, it can assess the consequences of scheduling decisions across the entire production horizon and generate schedules that guarantee that the fab's global objectives are met. The tests we have conducted against a heuristic-based scheduler have proven that Autonomous Scheduling delivered superior results. Book a demo to find out more.

Never miss a shipment

One of the most critical aspects of fab operations is meeting On-Time-Delivery deadlines. With AST, schedules are optimized towards specific fab objectives, ensuring that production targets align with business goals. Mark Patton, Director of Manufacturing Seagate Springtown, confirmed that adopting Autonomous Scheduling in his fab allowed him to:

"improve our predictability of delivery by meeting weekly customer commits. With a lengthy cycle time build, this predictability and linearity has been key to enabling the successful delivery and execution of meeting commits consistently."

Reduced workload (by at least 50%)

The reactive nature of heuristic-based schedulers places a significant burden on industrial engineers, who must constantly – and manually – tune rules and adjust parameters. To ensure these systems run optimally, fab managers must dedicate at least one industrial engineer to working full-time on maintaining them. With AST, the workload is significantly reduced due to the system's ability to optimize schedules autonomously (without human intervention). This means there will be no more firefighting when the WIP profile changes. This reduction in labor intensity frees up engineers to engage in value-added activities.

Reduced rework, improved yield

Some areas of a fab are notoriously challenging to optimize. For example, the diffusion and clean area is home to very complex time constraints, also known as timelinks. When timelinks are violated, wafers either require rework or must be scrapped. Either way, it's a considerable cost for a fab. Autonomous Scheduling Technology is highly effective at managing conflicting KPIs with its multi-objective optimization capabilities. AST dynamically adjusts to changes in the fabrication process to consistently eliminate timelink violations whilst maximizing throughput.  

Confidence in Balancing Trade-offs

With its ability to look ahead, Autonomous Scheduling Technology can predict the consequences of different trade-off settings. This capability is particularly valuable when balancing competing objectives like throughput and cycle time. Users of legacy schedulers would typically move sliders to adjust the settings and wait a considerable amount of time to assess whether the adjustments generate the desired scheduling behavior. If not, further iterations are required, and the process repeats. In contrast, AST can evaluate billions of potential scenarios and determine the optimal balance between conflicting goals. For example, it can predict the exact impact of prioritizing larger batches over shorter cycle times, allowing fab managers to make informed decisions with confidence. This strategic foresight ensures that the best possible trade-offs are made, optimizing the whole fab to meet overarching objectives. 

Conclusion

In an industry where efficiency and precision are paramount, Autonomous Scheduling Technology provides a distinct competitive advantage. It equips fabs with the tools to consistently outperform legacy systems, streamline operations, and ultimately drive greater profitability. By investing today in upgrading their legacy scheduling systems to Autonomous Scheduling Technology, wafer fabs are not only optimizing their current operations but also taking an important step toward the autonomous fab of the future.

Now available to download: our new Autonomous Scheduling Technology White Paper

We have just released a new White Paper on Autonomous Scheduling Technology (AST) with insights into the latest advancements and benefits.

Click here to read it. 

culture flexciton hiring vacancies job openings jobs infineon tsmc semiconductor labour shortage semiconductor industry stmicro samsung intel sk hynix smic
Read time
 min read
Culture
The Flex Factor with... Lio

Meet Lio, a driving force behind client success as Flexciton's Technical Customer Lead. Discover more about her keen eye for collaboration and passion for innovation in this edition of The Flex Factor.

Meet Lio, a driving force behind client success as Flexciton's Technical Customer Lead. Discover more about her keen eye for collaboration and passion for innovation in this edition of The Flex Factor.

Tell us what you do at Flexciton?

I’m a Technical Customer Lead.

What does a typical day look like for you at Flexciton?

The day is incredibly busy and passes quickly while collaborating with the customer team and other teams at Flexciton, making rapid progress day by day. My focus revolves around ongoing customer work, such as our work at Renesas (analyzing their adherence, checking the Flex Global heat map, and listening to feedback from the client). Additionally, I often work on live demos and PoC projects. The nature of my tasks varies depending on the project stage, ranging from initial data analysis and integration to final stages where I collaborate with sales on deliverables and the story of the final report. While consistently moving forward with projects and meeting weekly targets, we concurrently establish our working methods and standardize processes to improve efficiency for future projects. For lunch, I usually go to Atis, my go-to place for fresh and nutritious meals. People in the office call it a salad, but I consider it the best healthy lunch with the highest ROI.

What do you enjoy most about your role?

I find the most enjoyment in witnessing the impact our product has on customers who need it. It's fulfilling to see their reactions when they share challenges, and I appreciate understanding how Flexciton can collaborate with them, providing that extra element for improvement.

If you could summarize working at Flexciton in 3 words, what would they be?

Creative, Fast, Collaborative.

Given the fast-paced evolution of technology, what strategies do you recommend for continuous learning and skill development in the tech field?

Stay closely connected to the client side. Understanding the technology they're developing and their current tech level (MES and other systems) provides insights into their readiness for Flexciton.

In the world of technology and innovation, what emerging trend or development excites you the most, and how do you see it shaping our industry?

The semiconductor industry's rapid evolution and diversity are fascinating. The competition between TSMC and Samsung Foundry in advanced GAA (gate-all-around) technology is particularly intriguing. While Samsung claims to be ahead, industry voices suggest a bluff with poor yields. The competition is ongoing, and I wonder if TSMC will maintain its lead or if there will be a paradigm shift in the industry.

Tell us about your best memory at Flexciton?

Meeting the Renesas team at their fab in Palm Bay and witnessing one of their operators' reaction to our app was a memorable experience. Kodi, a talented young manufacturing specialist, was genuinely impacted by our technology which was amazing to see in person. After returning home, he even had a piece of code named after him by Amar.

Do you think you have what it takes to work at Flexciton? Visit our careers page to browse our current openings.
flexciton semiconductor industry ai scheduling optimization job shop tsmc infineon stmicro tower vishay siemens inficon efficiency artificial intelligence machine learning reinforcement learning chatgpt
Read time
 min read
Industry
Harnessing AI's Potential: Revolutionizing Semiconductor Manufacturing

AI has unquestionably stood out as the prevailing technological theme of the year. This wave of innovation begs the question: how can the semiconductor industry, which stands at the heart of technological progress, leverage AI to navigate its own intricate challenges?

The dominant technological theme of the year is unmistakably clear: artificial intelligence (AI) is no longer a distant future, but a transformative present. From the startling capabilities of conversational ChatGPT to the seamless navigation of autonomous vehicles, AI is demonstrating an unprecedented ability to manage complexity and enhance decision-making processes. This wave of innovation begs the question: how can the semiconductor industry, which stands at the heart of technological progress, leverage AI to navigate its own intricate challenges?

Complexity-driven Challenges 

Semiconductor wafer fabs are marvels of modern engineering, embodying a complexity that rivals any known man-made system. These intricate networks of toolsets and wafer pathways require precision and adaptability far beyond the conventional methods of management. The difficulty of this task is compounded by the current challenges that hinder its dynamic pace: a protracted shortage of skilled labor, technological advancement in product designs, and the ever-present volatility of the supply chain. 

The latest generation of products is the pinnacle of complexity, with production processes that involve thousands of steps and incredibly intricate constraints. This complexity is not just a byproduct of design; it is an inherent challenge in scaling up production while keeping costs within reasonable limits.

The semiconductor supply chain is equally complicated and often susceptible to disruptions that are becoming all too common. In this context, the requirement for skilled labor is more pronounced than ever. Running fab operations effectively demands a workforce that's not just technically skilled but also capable of innovative thinking to solve problems of competing objectives, improve processes, and extract more value. No small task in an environment already brimming with complexity.

The Need for AI in Semiconductor Manufacturing

As we delve into Industry 4.0, we find ourselves at a crossroads. The software solutions of today, while advanced, are not the panacea we once hoped for. The status quo has simply reshuffled the problems we face; we've transitioned from relying on shop floor veterans' tacit knowledge and intuition to a dependency on people who oversee and maintain the data in digital systems. These experts manning the screens are armed with MES, reporting, and legacy scheduling software, all purporting to streamline operations. Yet, the core issue remains: these systems still hinge on human intelligence to steer the intricate workings of the fabs.

At the core of these challenges lies a common denominator: the need for smarter, more efficient, and autonomous systems that can keep pace with the industry's rapid evolution. This is precisely where AI enters the frame, poised to address the shortcomings of current Industry 4.0 implementations. AI is not just an upgrade—it's a paradigm shift. It has the capability to assimilate the nuanced knowledge of experienced engineers and operators working in a fab and translate it into sophisticated, data-driven decisions. By integrating AI, we aim to break the cycle of displacement and truly solve the complex problems inherent in wafer fabs management. The potential of AI is vast, ready to ignite a revolution in efficiency and strategy that could reshape the very fabric of manufacturing.

Building AI for the Semiconductor Industry

Flexciton is the first company that built an AI-driven scheduling solution on the back of many years of scientific research and successfully implemented it into the semiconductor production environment.  So how did we do it?  

Accessing the Data 

The foundation lies in data – clean, accessible, and comprehensive data. Much like the skilled engineers who intuitively navigate the fab's labyrinth, AI requires a map – a dataset that captures the myriad variables and unpredictable nature of semiconductor manufacturing. 

Despite the availability of necessary data within fabs, it often remains locked in silos or relegated to external data warehouses, making it difficult to access. Yet, partnerships with existing vendors can unlock these valuable data reserves for AI applications.

Finding People Who Can Build AI

The chips that enable AI are designed and produced by the semiconductor industry, but the AI-driven applications are developed by people who are not typically found within the sector. They align with powerhouses like Google and Amazon or deep-tech companies working on future-proof technologies. This reveals a broader trend: the allure of semiconductors has diminished for the emerging STEM talent pool, overshadowed by the glow of places where state-of-the-art tech is being built. Embracing this drift, Flexciton planted its roots in London, a nexus of technological evolution akin to Silicon Valley. This strategic choice has enabled us to assemble a diverse and exceptional team of optimization and software engineers representing 22 nationalities among just 43 members. It's a testament to our commitment to recruiting premier global talent to lead the charge in tech development, aiming to revolutionize semiconductor manufacturing. 

AI Needs Cloud

The advent of cloud computing marks a significant milestone in technological evolution, enabling the development and democratization of technology based on artificial intelligence. At the core of AI development lies the need for vast computing power and extensive data storage capabilities. The cloud environment offers the ability to rapidly provision resources at a relatively low cost. With just a few clicks, a new server can be initialized, bypassing the traditional complexities of hardware installation and maintenance typically handled by IT personnel.

Furthermore, the inherent scalability of the cloud means that not only can we meet our current computing needs but we can also seamlessly expand our resources as new technologies emerge. This flexibility provides collaborating fabs with the latest technology while avoiding the pitfalls of significant initial investment in equipment that requires regular maintenance and eventually becomes obsolete.

Security within the cloud is an area where misconceptions abound. As a cloud-first company, we often address queries about data security. It's crucial to understand that being cloud-first does not equate to possessing your data. In fact, your data is securely stored in Microsoft Azure data centers, which are bastions of security. Microsoft's commitment to cyber security is reflected in its employment of more than 3,500 professionals whose job is to ensure that data centers are robust and a fortress for data, offering peace of mind that often surpasses the security capabilities of private data centers.

Effective Deployment of AI in Fabs

The introduction of AI-driven solutions within a fab environment entails a significant change in existing processes and workflows and often results in decision-making that diverges from the traditional. This can unsettle teams and requires a comprehensive change management strategy. Therefore the implementation process must be planned as a multifaceted endeavor and deeply rooted in human collaboration. 

A successful deployment begins with assembling the right team—a blend of industrial engineers with intimate knowledge of fab operations, and technology specialists who underpin the AI infrastructure. This collective must not only include fab management and engineers but also those who are the lifeblood of the shop floor—individuals who intimately understand the fab's heartbeat.

When it comes to actual deployment, the process is iterative and data-centric. Setting clear objectives is pivotal. The AI must be attuned to the Fab's goals—be it enhancing throughput or minimizing cycle times. Often, the first output may not align with operational realities—a clear indication of the AI adage that the quality of input data dictates the quality of output. It is at this juncture that the expertise of Fab professionals becomes crucial, scrutinizing and correcting the data, and refining the schedules until they align with practical Fab dynamics. With objectives in place and a live scheduler operational, the system undergoes rigorous in-FAB testing.

Change management is the lynchpin in this transformative phase. The core of successful AI adoption is rooted in the project team's ability to communicate the 'why' and 'how'—to educate, validate, and elucidate the benefits of AI decisions that, while novel, better align with overarching business goals and drive performance metrics forward.

Making AI Understandable and Manageable

The aversion to the enigmatic 'black box' is universal. In the world of fabs, it can be a barrier to trust and adoption —operational teams must feel empowered to both grasp and guide the underlying mechanisms of AI models.

We made a considerable effort to refine our AI scheduler by incorporating a feature that enables the user to influence the objective of what our AI scheduler is tasked to achieve and also to understand the decision. Once a schedule is created, engineers can look through those decisions and inspect and interrogate them to understand why the scheduler made these decisions.

Case Studies: Success Stories of AI Deployment

I firmly believe that we are on the cusp of a transformative era in semiconductor manufacturing, one where AI-driven solutions will yield unprecedented benefits. To illustrate this, let's delve into some practical case studies. 

The first involves implementing Flexciton's AI scheduler within the complex diffusion area of a wafer fab—a zone notorious for its intricate processes. We aimed to achieve a trifecta of goals: maximize batch sizes, minimize rework, and significantly reduce reliance on shop floor decision-making. The challenge was magnified by the fab's limited IT and IE resources at the time of deployment. Partnering with an existing vendor whose systems were already integrated and had immediate access to essential data facilitated a rapid and efficient implementation with minimal engagement of the fab's IT team. This deployment led to remarkable improvements: clean tools saw 25% bigger batches, and rework in the diffusion area was slashed by 36%.

Another case study details a full fab deployment, where the existing rules-based scheduling system was replaced with Flexciton's AI scheduler. The goal was to enhance capacity and reduce cycle times. The deployment was staged, beginning with simpler areas starting with metrology tools, through the photolithography area and eventually scaling to the entire fab, yielding a global optimization of work-in-process (WIP) flow. The result was a significant increase in throughput and a staggering 75% reduction in manual flow control transactions, a testament to the AI's ability to autonomously optimize WIP flow and streamline operations.

The Autonomous Future of Semiconductor Manufacturing

In closing, the semiconductor industry stands on the precipice of a new era marked by autonomy. AI technology, with its capacity to make informed decisions without human input, has demonstrated not only the potential for improved KPIs but also a significant reduction in the need for human decision-making. The future of semiconductor manufacturing is one where AI-driven solutions consistently deliver superior production results, alleviating the human workload and steering fabs towards their objectives with unprecedented precision and efficiency.

As we embrace this autonomous future, it becomes clear that the integration of AI in semiconductor manufacturing is not just an enhancement of the status quo but a reinvention of it. With each fab that turns to AI, the industry moves closer to realizing a vision where technology and human ingenuity converge to create a landscape of limitless potential.

Author: Jamie Potter, CEO and Cofounder, Flexciton