For many years, my career has been deeply rooted in the ever-changing world of manufacturing–an industry where progress relies on innovation. Throughout my professional journey, I have been immersed in this dynamic sector, focusing on creating bespoke software solutions for manufacturing and logistics, all the while seamlessly integrating third-party solutions into established workflows. My experience has afforded me the opportunity to first-hand witness the profound changes that digitalisation and automation have brought to the manufacturing landscape. As technology and manufacturing processes have become more closely intertwined, the operational dynamics of production have been reshaped.
Like any successful partnership, the marriage of manufacturing and technology requires a strong foundation built on trust, mutual understanding, respect, and a shared ambition to support each other's growth and empowerment. However, these transformative shifts have brought along their fair share of challenges and concerns that continue to echo around the manufacturing world.
A few years ago, I collaborated with a couple of value stream managers as we scoured the market for various digital products, seeking the optimal solution to integrate with our in-house developed material requirements planning (MRP) system.
One significant concern was the fear of adopting software that was too intrusive. In an industry where precision and control are paramount, the idea of software delving too deeply into our operations was disconcerting. Even worse was the fear of getting locked into specific technologies. Having deeply integrated software within our operations poses a risk due to them being so costly to replace, which potentially limits our capacity to adapt and evolve in tandem with the industry. We wanted automation and the ability to forecast the incoming work. Our aim was to prevent defects and misjudgments, all the while ensuring that we retained control over our manufacturing processes. And importantly, we were adamant about not compromising our quality standards.
The reality is that the market for manufacturing-oriented software is littered with solutions that are cumbersome, inflexible, and expensive. When I joined Flexciton as a Senior Product Manager, I was pleasantly surprised to discover a refreshing departure from the norm in Flexciton's product philosophy.
It evokes the concept of “servant software”. Similar to the idea of servant leadership–where a leader prioritises the well-being, growth and empowerment of team members–servant software aims to streamline processes, simplify tasks, and provide solutions that cater to the users' requirements and preferences.
A servant software encompasses, as a foundational principle, the advantage of being as flexible and adaptable as a meticulously tailored suit. This quote summarises the concept:
Upgrade your user, not your product. Don’t build better cameras — build better photographers.
— Kathy Sierra
Picture Josh, a Senior Fab Operator in the diffusion area, who has been working for five years in a manually operated wafer fab. Half of his workday is consumed by the arduous task of sifting through a colossal spreadsheet that meticulously logs all the lots in progress, each with its own unique characteristics. He sits at his desk, constantly toggling between this spreadsheet and another monitor displaying the real-time status of the tools.
Jotting down notes on a piece of paper, Josh ventures into the tangible world of the fab. There, he confronts the actual events unfolding. He asks himself, "Is this an actuality? Are these lots genuinely ready for processing? Can I really preload this tool?" Realisation strikes: "No, they are still in transit, and I cannot proceed with this batch," or "I can’t preload this tool yet; a few minutes are still left." Josh retreats to his desk to recalibrate his plans once more.
When operators are liberated from repetitive and inefficient tasks, they can harness their cognitive abilities to identify improvement opportunities, propose innovative solutions, and implement process enhancements directing their efforts towards value-added activities that demand uniquely human qualities. This empowerment not only enhances job satisfaction but also drives a culture of ownership and accountability.
Servant software aligns seamlessly with the principles of lean management, a philosophy that champions efficiency through the elimination of waste and continuous improvement. Lean management is not just about operational optimization, it emphasises a shift in mindset, encouraging all levels of an organisation to work cohesively towards shared objectives. By integrating servant software within this framework, manufacturers can elevate their workforce's role away from simply executing tasks and towards contributing to the bigger picture.
Operators typically concentrate their efforts within their designated areas of responsibility, striving to optimize operations by carefully managing various tasks. They work diligently to maintain a delicate balance among tools, ensuring workloads are efficiently allocated, changeovers are optimized, and maintenance and process control activities are accommodated for. Even within a confined production area, this manual juggling of numerous constraints and variables presents a considerable challenge, a topic we explored further in our article on autonomous scheduling.
A new way to schedule the fab is the key. But what’s in it for the operators? What is the impact on their daily work? Our software aims to provide operators with a tool that leads them to take the right action at precisely the right moment. It ensures that tasks are executed with impeccable timing, neither prematurely nor delayed, considering not only the current status of the WIP (work in progress) and the tools they are responsible for, but also the potential effect of their actions on the following production stages.
This goes beyond optimizing individual areas; instead, it is designed to harmonise the entire manufacturing process. By avoiding over-optimization of one area, we prevent potential bottlenecks or resource shortages elsewhere in the workflow, resulting in a balanced, easily monitored, and controllable production process.
Our operators' tools are integral to the Flexciton application ecosystem, where every component is integrated and consistent. From analytics and scheduling to automated tuning, and extending to the practical, hands-on actions of our operators—such as loading or unloading tools or conducting Statistical Process Control (SPC) tasks—our system comprehensively covers all aspects. Therefore, Josh can simply glance at his portable device to discern the next best action to perform or be notified when something urgently requires his attention.
Our primary goal is to provide operators with the essential information they need, without overwhelming them. This information is easily accessible on portable devices, ensuring its effectiveness from the very first day an operator steps into the fab.
Operators—now armed with useful insights and empowered by automation—can expand their contributions beyond their individual roles, engaging in more value-adding tasks. The result is a collaborative ecosystem where every individual becomes a key player in achieving fab-wide targets and goals.
In delivering software solutions for the semiconductor industry, our mission revolves around achieving an optimal balance, thereby cultivating a modern, flexible, and customer-centric product philosophy. Our platform, while robust, maintains a deep respect for operational boundaries, ensuring that our customers are not confined to rigid models.
Instead, it functions as a dynamic tool that enriches adaptability and innovation, and grants users complete control over their manufacturing processes. By adhering to these core principles and relentlessly pursuing software that empowers without overwhelming, we unlock the full potential of a harmonious synergy between technology and manufacturing, propelling progress forward without concessions.
Author: Valentina Vivian, Senior Product Manager at Flexciton
The semiconductor industry is set to receive $1tn in investment over the next six years, driven by AI and advanced technologies, with over 100 new wafer fabs expected. However, labor shortages continue to pose a challenge, pushing the need for autonomous wafer fabs to ensure continued growth.
Over the next 6 years, the semiconductor industry is set to receive around $1tn in investment. The opportunities for growth – driven by the rapid rise of AI, autonomous and electric vehicles, and high-performance computing – are enormous. To support this anticipated growth, over 100 new wafer fabs are expected to emerge worldwide in the coming years (Ajit Manocha, SEMI 2024).
However, a significant challenge looms: labor. In the US, one-third of semiconductor workers are now aged 55 or older. Younger generations are increasingly drawn to giants like Google, Apple and Meta for their exciting technological innovation and brand prestige, making it difficult for semiconductor employers to compete. In recent years, the likelihood of employees leaving their jobs in the semiconductor sector has risen by 13% (McKinsey, 2024).
To operate these new fabs effectively, the industry must find a solution. The Autonomous Wafer Fab, a self-optimizing facility with minimal human intervention and seamless production, is looking increasingly likely to be the solution chipmakers need. This vision, long held by the industry, now needs to be accelerated due to current labor pressures.
Thankfully, rapid advancements in artificial intelligence (AI) and Internet of Things (IoT) mean that the Autonomous Wafer Fab is no longer a distant dream but an attainable goal. In this blog, we will explore what an Autonomous Wafer Fab will look like, how we can achieve this milestone, the expected outcomes, and the timeline for reaching this transformative state.
Imagine a wafer fab where the entire production process is seamlessly interconnected and self-regulating, free to make decisions on its own. In this autonomous environment, advanced algorithms, IoT, AI and optimization technologies work in harmony to optimize every aspect of the manufacturing process. From daily manufacturing decisions to product quality control and fault prediction, every step is meticulously coordinated without the need for human intervention.
Intelligent Scheduling and Planning: The heart of the autonomous fab lies in its scheduling and planning capabilities. By leveraging advancements such as Autonomous Scheduling Technology (AST), the fab has the power to exhaustively evaluate billions of potential scenarios and guarantee the optimal course for production. This ensures that all constraints and variables are considered, leading to superior outcomes in terms of throughput, cycle time, and on-time delivery.
Real-Time Adaptability: An autonomous fab is equipped with sensors and IoT devices that continuously monitor the production environment. These devices can feed real-time data into the scheduling system, allowing it to dynamically adjust schedules and production plans in response to any changes or disruptions.
Digital Twin: Digital Twin technology mirrors real-time operations through storing masses of data from sensors and IoT devices. This standardized data schema allows for rapid introduction of new technologies and better scalability. Moreover, by simulating production processes, it helps to model possible scenarios – such as KPI adjustments – within the specific constraints of the fab.
Predictive maintenance: Predictive maintenance systems will anticipate equipment failures before they occur, reducing downtime and extending the lifespan of critical machinery. This proactive approach ensures that the fab operates at peak efficiency with minimal interruptions. Robotics will carry out the physical maintenance tasks identified by these systems, and when human intervention is necessary, remote maintenance capabilities will allow technicians to diagnose and address issues without being on-site.
The Control Room: In an autonomous fab, decision-making is driven by data and algorithms. The interconnected system can balance trade-offs between competing objectives, such as maximizing throughput while minimizing cycle time, with unparalleled precision. That said, critical decisions such as overall fab objectives may still be left to humans in the “control room”, who could be on the fab site or 9000 km away…
Achieving the vision of an Autonomous Wafer Fab requires a multi-faceted approach that integrates technological innovation, strategic investments, and a cultural shift towards embracing automation. Here are the key steps to pave the way:
A Robust Roadmap: All fabs within an organization need to have a common vision. Key milestones need to be laid out to help navigate each fab through the transition with clear actions at each stage. SEMI’s smart manufacturing roadmap offers an insight into what this could look like.
Investing in Novel Technologies: The pivotal step towards autonomy is investing in the latest technologies, including AI, machine learning, AST, and IoT. These technologies form the backbone of the autonomous fab, enabling intelligent planning and scheduling, real-time monitoring, and adaptive control.
Data Integration and Analytics: A crucial aspect of autonomy is the seamless integration of data from various sources within the fab. By harnessing big data analytics, fabs can not only gain deep insights into their operations, but they will have the correct data in place to support autonomous systems further down the line.
Developing Skilled Workforce: While the goal is to minimize human intervention, the semiconductor industry will still require skilled professionals who can manage and maintain advanced systems. Investing in workforce training and development to fill the current void is essential to ensure a smooth transition.
Collaborative Ecosystem: Even the biggest of chipmakers is unlikely to reach the autonomous fab all on their own. Collaboration with technology providers, research institutions, and industry partners will be key. Sharing knowledge and best practices can accelerate the development and deployment of autonomous solutions.
Pilot Programs and Gradual Implementation: Transitioning to an autonomous fab should be approached incrementally. Starting with pilot programs to test and refine technologies in a controlled environment will help identify challenges and demonstrate the benefits. Gradual implementation allows for continuous improvement and adaptation.
The transition to an Autonomous Wafer Fab promises a multitude of benefits that will revolutionize semiconductor manufacturing:
Enhanced Efficiency: By optimizing production schedules and processes, autonomous fabs will achieve higher throughput and better resource utilization. This translates to increased production capacity and reduced operational costs.
Better Quality: Advanced process control and real-time adaptability ensure consistent product quality, minimizing defects and rework. This leads to higher yields and greater customer satisfaction.
Reduced Downtime: Predictive maintenance and automated decision-making reduce equipment failures and production interruptions. This results in higher uptime and more reliable operations.
Improved Flexibility: Autonomous fabs can quickly adapt to changing market demands and production requirements. This flexibility enables manufacturers to respond rapidly to customer needs and stay competitive in a dynamic industry.
Cost Savings: The efficiencies gained from autonomous operations lead to significant cost savings. Reduced labor intensity, lower material waste, and optimized energy consumption contribute to a more cost-effective production process.
The journey towards an Autonomous Wafer Fab is well underway, but the timeline for full realization varies depending on several factors, including technological advancements, industry adoption, and investment levels. However, significant progress is expected within the next decade.
Short-Term (1-3 Years):
Medium-Term (3-7 Years):
Long-Term (7-10 Years and Beyond):
The pathway to the Autonomous Wafer Fab is a transformative journey that holds immense potential for the semiconductor industry. By embracing advanced technologies, fostering collaboration, and investing in the future workforce, fabs can unlock unprecedented levels of efficiency, quality, and flexibility. Autonomous Scheduling Technology, as a key pillar, will play a crucial role in this evolution, driving the industry towards a future where production is seamless, self-optimizing, and truly autonomous. The vision of an Autonomous Wafer Fab is not just a distant possibility but an imminent reality, poised to redefine the landscape of semiconductor manufacturing.
Now available to download: our new Autonomous Scheduling Technology White Paper
We have just released a new White Paper on Autonomous Scheduling Technology (AST) with insights into the latest advancements and benefits.
Click here to read it.
From guaranteed KPI improvements to reducing fab workload by 50%, this blog introduces some of the benefits of Autonomous Scheduling Technology (AST) and how it contrasts with the scheduling status quo.
In the fast-paced world of semiconductor manufacturing, efficient production scheduling is crucial for chipmakers to maintain competitiveness and profitability. The scheduling methods used in wafer fabs can be classified into two main categories: heuristics and mathematical optimization. Both methods aim to achieve the same goal: to provide the best schedules within their capabilities. However, because they utilize different problem-solving methodologies, the outcome is dramatically different. Simply put, heuristics generates solutions by making decisions based on if-then rules predefined by a human, while optimization algorithms search through billions of possible scenarios to automatically select the most optimal one.
Autonomous Scheduling Technology (AST) features mathematical optimization combined with smart decomposition, allowing the quick delivery of optimal production schedules. Whether you are a fab manager or industrial engineer, the experience and results of applying Autonomous Scheduling in your fab are fundamentally different compared to a heuristic scheduler.
Here's how switching to AST can impact your fab.
Autonomous Scheduling Technology (AST) evaluates all constraints and variables in the production process simultaneously, ensuring optimal decision-making. Unlike heuristics schedulers, which require ongoing trial and error with if-then rules to solve the problem, AST allows the user to balance trade-offs between high level fab objectives. With its forward-looking capability, it can assess the consequences of scheduling decisions across the entire production horizon and generate schedules that guarantee that the fab's global objectives are met. The tests we have conducted against a heuristic-based scheduler have proven that Autonomous Scheduling delivered superior results. Book a demo to find out more.
One of the most critical aspects of fab operations is meeting On-Time-Delivery deadlines. With AST, schedules are optimized towards specific fab objectives, ensuring that production targets align with business goals. Mark Patton, Director of Manufacturing Seagate Springtown, confirmed that adopting Autonomous Scheduling in his fab allowed him to:
"improve our predictability of delivery by meeting weekly customer commits. With a lengthy cycle time build, this predictability and linearity has been key to enabling the successful delivery and execution of meeting commits consistently."
The reactive nature of heuristic-based schedulers places a significant burden on industrial engineers, who must constantly – and manually – tune rules and adjust parameters. To ensure these systems run optimally, fab managers must dedicate at least one industrial engineer to working full-time on maintaining them. With AST, the workload is significantly reduced due to the system's ability to optimize schedules autonomously (without human intervention). This means there will be no more firefighting when the WIP profile changes. This reduction in labor intensity frees up engineers to engage in value-added activities.
Some areas of a fab are notoriously challenging to optimize. For example, the diffusion and clean area is home to very complex time constraints, also known as timelinks. When timelinks are violated, wafers either require rework or must be scrapped. Either way, it's a considerable cost for a fab. Autonomous Scheduling Technology is highly effective at managing conflicting KPIs with its multi-objective optimization capabilities. AST dynamically adjusts to changes in the fabrication process to consistently eliminate timelink violations whilst maximizing throughput.
With its ability to look ahead, Autonomous Scheduling Technology can predict the consequences of different trade-off settings. This capability is particularly valuable when balancing competing objectives like throughput and cycle time. Users of legacy schedulers would typically move sliders to adjust the settings and wait a considerable amount of time to assess whether the adjustments generate the desired scheduling behavior. If not, further iterations are required, and the process repeats. In contrast, AST can evaluate billions of potential scenarios and determine the optimal balance between conflicting goals. For example, it can predict the exact impact of prioritizing larger batches over shorter cycle times, allowing fab managers to make informed decisions with confidence. This strategic foresight ensures that the best possible trade-offs are made, optimizing the whole fab to meet overarching objectives.
In an industry where efficiency and precision are paramount, Autonomous Scheduling Technology provides a distinct competitive advantage. It equips fabs with the tools to consistently outperform legacy systems, streamline operations, and ultimately drive greater profitability. By investing today in upgrading their legacy scheduling systems to Autonomous Scheduling Technology, wafer fabs are not only optimizing their current operations but also taking an important step toward the autonomous fab of the future.
Now available to download: our new Autonomous Scheduling Technology White Paper
We have just released a new White Paper on Autonomous Scheduling Technology (AST) with insights into the latest advancements and benefits.
Click here to read it.
Meet Lio, a driving force behind client success as Flexciton's Technical Customer Lead. Discover more about her keen eye for collaboration and passion for innovation in this edition of The Flex Factor.
Meet Lio, a driving force behind client success as Flexciton's Technical Customer Lead. Discover more about her keen eye for collaboration and passion for innovation in this edition of The Flex Factor.
I’m a Technical Customer Lead.
The day is incredibly busy and passes quickly while collaborating with the customer team and other teams at Flexciton, making rapid progress day by day. My focus revolves around ongoing customer work, such as our work at Renesas (analyzing their adherence, checking the Flex Global heat map, and listening to feedback from the client). Additionally, I often work on live demos and PoC projects. The nature of my tasks varies depending on the project stage, ranging from initial data analysis and integration to final stages where I collaborate with sales on deliverables and the story of the final report. While consistently moving forward with projects and meeting weekly targets, we concurrently establish our working methods and standardize processes to improve efficiency for future projects. For lunch, I usually go to Atis, my go-to place for fresh and nutritious meals. People in the office call it a salad, but I consider it the best healthy lunch with the highest ROI.
I find the most enjoyment in witnessing the impact our product has on customers who need it. It's fulfilling to see their reactions when they share challenges, and I appreciate understanding how Flexciton can collaborate with them, providing that extra element for improvement.
Creative, Fast, Collaborative.
Stay closely connected to the client side. Understanding the technology they're developing and their current tech level (MES and other systems) provides insights into their readiness for Flexciton.
The semiconductor industry's rapid evolution and diversity are fascinating. The competition between TSMC and Samsung Foundry in advanced GAA (gate-all-around) technology is particularly intriguing. While Samsung claims to be ahead, industry voices suggest a bluff with poor yields. The competition is ongoing, and I wonder if TSMC will maintain its lead or if there will be a paradigm shift in the industry.
Meeting the Renesas team at their fab in Palm Bay and witnessing one of their operators' reaction to our app was a memorable experience. Kodi, a talented young manufacturing specialist, was genuinely impacted by our technology which was amazing to see in person. After returning home, he even had a piece of code named after him by Amar.